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and find qualitative agreement between the two approaches. Conversely, we calculate

the jet-quenching parameter for N = 4 super-Yang-Mills with an R-charge density (or

equivalently, a chemical potential), and compare our result with the corresponding drag

force.
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1. Introduction and summary

Recently there has been a surge of interest in the possibility of employing the gauge/gravity

duality [1, 2] to determine the rate of energy loss in finite-temperature strongly-coupled

gauge theories. The ultimate aim of this program would be to make contact with current [3]

and future [4] experimental studies of quark-gluon plasma (QGP), but at this point the

gravity dual of QCD is not yet available, so one must still be cautious when attempting to

draw inferences in this direction.

In the AdS/CFT context, the issue of energy loss has been approached from three

different perspectives. The authors of [5] proposed a model-independent, non-perturbative

definition of the jet-quenching parameter (which in the QGP case codifies the suppression of

hadrons with high transverse momenta) in terms of a light-like Wilson loop, which they then

computed in N = 4 super-Yang-Mills (SYM) using the recipe of [6]. Their computation

was generalized in [7] to the cascading gauge theory [8, 9] at finite temperature [10], and

in [11] to certain marginal deformations of the N = 4 theory. Related work may be found

in [12, 13].

A second approach was pursued in [14, 15], where the drag force experienced by a

heavy quark that moves through N = 4 SYM plasma was determined by considering

a string in the dual AdS-Schwarzschild geometry. This calculation was extended to all

asymptotically AdS geometries in [16], including the case dual to N = 4 SYM with a

non-zero chemical potential, a case that was studied simultaneously in [17] from a different

perspective: whereas [17] worked directly with the ten-dimensional spinning D3-brane

background, [16] employed instead the five-dimensional charged black hole solution of N =

8 gauged supergravity [18] obtained upon Kaluza-Klein reduction on the S5 [19], thereby

arriving at different results. A more detailed picture of the energy-loss process was painted

in [20], which studied the wake left by the quark as it ploughs through the plasma, using

the methods of [21, 22]. The connection between the rate of energy loss found in [14, 15]

and magnetic confinement was explored very recently in [23].
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A third approach [24] extracted the diffusion coefficient for a heavy quark in the N = 4

plasma from an analysis of small fluctuations of a Wilson line that follows the Schwinger-

Keldysh contour. On the AdS side of the duality, this involved a study of fluctuations that

propagate along a string; similar calculations were carried out in [14].

It is important to explore the relation between these three approaches. As a step

in this direction, in this paper we compare the drag forces and jet-quenching parameters

for two different gauge theories. We begin in section 2 by generalizing the drag force

calculation of [14 – 16] to backgrounds with arbitrary metric and dilaton fields, finding the

general result (2.12). In section 3 we then specialize to the cascading gauge theory, where

the resulting drag force (3.4) is found to display a highly non-trivial velocity dependence.

We compare this force with the jet-quenching parameter1 (3.9) determined in [7], finding

agreement in functional form, and numerical agreement (up to an overall constant) in the

region of large velocities. In section 4 we proceed in the opposite direction, computing the

jet-quenching parameter for the N = 4 plasma with an R-charge density, and comparing

the result with the drag force determined in [17]. This comparison is interesting because

in this case the quantities to be compared are not just numbers but functions of the charge

density J . For small values of J , our result (4.15) is again in qualitative agreement with the

drag force (4.16) obtained in [17], but for arbitrary charges, the results (4.12) and (4.19)

disagree.

The general lesson appears to be that the parameter q̂ defined by [5] and the dissipative

force extracted from the procedure pioneered in [14, 15] represent closely related but not

identical measures of the rate of energy dissipation in a given non-Abelian plasma. Our

results underline the interest in exploring the connection between the various approaches

to energy loss from a more general viewpoint, by attempting to extrapolate from one to

the other directly at the level of the corresponding AdS/CFT calculations.2

2. Drag force in gauge theories with holographic

duals

Consider a background dilaton field φ(x) and stationary Einstein frame metric

ds2
E = Gµν(x)dxµdxν (2.1)

that holographically encode the dynamics of a strongly-coupled gauge theory. Since we

are interested in studying this gauge theory at a finite temperature T , we assume the

geometry (2.1) includes a black hole [28]. In this setup one can introduce an external quark

in the gauge theory by considering a string that has a single endpoint at the boundary and

extends all the way down to the horizon [6] (the gauge theory is therefore non-confining at

the given temperature).

1To be more precise, we find that the directly comparable quantities are the jet-quenching parameter q̂

and the ratio µ/T , where µ is the friction coefficient that determines the drag force through dp/dt = −µp.
2After the first version of this paper had appeared on the arXiv, the relation between the drag force [14,

15] and jet-quenching [5] approaches was discussed in the context of a study of mesons moving through the

plasma [25, 26]. Related work may be found in [27].
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The relevant string dynamics are captured by the Nambu-Goto action

S = − 1

2πα′

∫

dτdσeφ/2
√

−detgαβ , (2.2)

with gαβ = Gµν∂αXµ∂βXν . Letting z denote the radial coordinate of the black hole

geometry and t, xi (i = 1, 2, 3) label the directions along the boundary at spatial infinity,

we make the static gauge choice σ = z, τ = t, and, following [14, 15], focus attention on

the configuration

X1(z, t) = vt + ρ(z) , X2 = 0 = X3 . (2.3)

For the appropriate sign of ρ′, this describes the string trailing behind its boundary endpoint

as it moves at constant speed v in the x1 direction, a configuration dual to the external

quark traversing the plasma.

Using (2.3) in (2.2), we find the Lagrangian

L ≡ eφ/2
√

−detg = eφ/2
√

−GzzGtt − GzzGxxv2 − GxxGttρ′2 , (2.4)

which results in an equation of motion for ρ implying that

πX =
∂L
∂ρ′

= eφ/2 GxxGtt√−g
ρ′ (2.5)

is a constant. Inverting this relation we obtain

(ρ′)2 = −π2
ρ

Gzz(Gtt + Gxxv2)

GxxGtt(eφGxxGtt + π2
X)

. (2.6)

Just like in the N = 4 case analyzed in [14, 15], for v2 > 0 the numerator in this expression

changes sign at a radius z = zv defined by

(Gtt + Gxxv2)|z=zv
= 0 , (2.7)

and so the string will not be able to extend all the way down to the horizon at z = zH

unless the denominator also changes sign at zv . This condition fixes

π2
X = −eφGxxGtt|z=zv

= v2eφG2
xx|z=zv

. (2.8)

With (2.6) we can then compute the current density for momentum along x1,

P z
x = − 1

2πl2s
eφ/2Gxνg

zα∂αXν (2.9)

= − 1

2πl2s
eφ/2 GxxGtt

detg
ρ′ , (2.10)

and use it to compute the drag force experienced by the string/quark,

dp1

dt
=

√

−detgP z
x = − 1

2πl2s
eφ/2 GxxGtt√−detg

ρ′ , (2.11)

which after some algebra is easily seen to simplify to

dp1

dt
= − πX

2πl2s
= − v

2πl2s
eφ/2Gxx|z=zv

. (2.12)

This generalizes the result obtained in [16] to backgrounds with an arbitrary dilaton profile.
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3. Drag force in the cascading plasma

Let us now apply the results of the previous section to an interesting concrete example:

the Klebanov-Strassler cascading gauge theory [8, 9], whose dual geometry at temperatures

high above the deconfining transition was constructed in [10] (see also [33, 32]) and is

given by

ds2 =

√

8a/K∗√
z

e2P 2η
(

−(1 − z)dt2 + d ~X2
)

+

√
K∗

32
e−2P 2(η−5ξ) dz2

z2(1 − z)
(3.1)

+

√
K∗

2
e−2P 2(η−ξ)

[

e−8P 2ωe2
ψ + e2P 2ω(e2

θ1
+ e2

φ1
+ e2

θ2
+ e2

φ2
)
]

,

ξ =
2z + [−2z + (z − 2) log(1 − z)] log z + (z − 2)Li2(z)

40K∗z
,

η =
z − 2

16K∗z
[log z log(1 − z) + Li2(z)] ,

φ =
P 2

K∗

(

−π2

24
+

1

4
Li2(1 − z)

)

,

where the radial coordinate z runs from the horizon at z = 1 to the boundary at z → 0.

Using (3.1) in (2.8) one finds that zv = 1 − v2 and

πX = −v
(

eφ/2Gxx

)

z=zv

= −
√

8a

K∗
v

(

e2P 2ηeφ/2

√
z

)

z=1−v2

, (3.2)

or, more explicitly,

πX = −
√

8a

K∗

v√
1 − v2

exp

{

P 2

K∗
f(v)

}

, (3.3)

f(v) ≡ 1

2

[

−π2

24
+

1

4
Li2v

2 − (1 + v2)

4(1 − v2)

(

log(1 − v2) log v2 + Li2(1 − v2)
)

]

.

The drag force is then given by (2.12) as

dp

dt KT
= − 1

2πl2s

√

8a

K∗

v√
1 − v2

[

1 + f(v)
P 2

K∗
+ O

(

P 4

K2
∗

)]

, (3.4)

where we have kept only the first two terms in an expansion in powers of P 2/K∗ ¿ 1,

because the solution (3.1) itself is only valid to this order. The velocity-dependence seen

in the first term is just the p/m factor present already in N = 4 SYM [14, 15]. The second

term has an additional non-trivial dependence codified in the function f(v) defined in (3.3),

which approaches the value −π2/24 ' −0.411 for v → 0, and has a logarithmic divergence

in the ultrarelativistic region v → 1. As seen in figure 1, away from this region f(v) is

nearly constant.

As in [7], it is instructive to compare the result (3.4) for the cascading plasma against

the drag force in N = 4 SYM [14, 15],

dp

dt N=4
= −

π
√

g2
Y MN

2
T 2 v√

1 − v2
, (3.5)
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Figure 1: The function defined in (3.3), which codifies the dependence of the drag force (3.4) on

the velocity beyond the expected relativistic dependence v/
√

1 − v2 found already in N = 4 SYM.

by considering the ratio

dp
dt KT

dp
dt N=4

=
1

π2l2s

√

8a

K∗

1

T 2

1
√

g2
Y MN

[

1 +
P 2

K∗
f(v) + O

(

P 4

K2
∗

)]

. (3.6)

Employing the relation 8a = T 4K2
∗/4 [10], this reads

dp
dt KT

dp
dt N=4

=
1

2π2l2s

√

K∗

g2
Y MN

[

1 +
P 2

K∗
f(v) + O

(

P 4

K2
∗

)]

. (3.7)

Upon synchronizing the rank of the N = 4 theory with the effective rank of the cascad-

ing gauge theory at the given temperature by setting K∗ =
√

2/πL4
P N =

√
4κ2πN =

24π3gsl
4
sN , and using g2

Y M = 4πgs, we are left with the final result

dp
dt KT

dp
dt N=4

= 1 + f(v)
P 2

K∗
+ O

(

P 4

K2
∗

)

. (3.8)

This ratio has the same qualitative form as the one computed for the corresponding jet-

quenching parameter calculated in [7],

q̂cascade

q̂N=4
= 1 + χ

P 2

K∗
+ O

(

P 4

K2
∗

)

, (3.9)

with χ ' −1.388. In both cases the temperature-dependence arises only from the depen-

dence of the effective rank K∗ on T , the precise form of which is K∗/2P
2 ' log(T/Λ) [10].

In addition, f(v) is negative for any value of v (see figure 1), which implies that, just like

the jet-quenching parameter, the drag force increases with increasing temperature. It also

seems worth pointing out that precise numerical agreement between f(v) and χ is achieved

at a rather large value of the velocity, v ∼ .994, which appears to be related to the fact

that the jet-quenching calculation focuses on ultra-relativistic quarks.

– 5 –
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Before closing this section we should note that it has recently been argued [34] that (3.1)

cannot be trusted all the way down to the boundary at z = 0, because the perturbative

expansion in P 2/K∗ ¿ 1 through which it was derived [10] breaks down at a critical radius

zc = e−2K∗/P 2

, which is non-perturbatively small but non-zero. Since the drag force (3.4)

is determined by the value of the metric and dilaton at zv = 1 − v2, this does not affect

our result as long as zv À zc, which means that we can consider ultra-relativistic velocities

except for a region parametrically close to v = 1, defined by the condition ln γ ≥ K∗/P
2.

As an example, validity of (3.4) at the velocity v = 0.994 considered in the preceding

paragraph merely requires that P 2/K∗ ¿ 0.45. The problem of obtaining a solution valid

all the way down to z = 0 has been addressed numerically in [34]. In any case, our

main goal in this section has been to obtain a drag force comparable to the jet-quenching

parameter (3.9), which was derived in [7] using the background (3.1).

4. Jet-quenching parameter in a charged N = 4 plasma

The near-horizon metric for rotating D3-branes at finite temperature and with one angular

momentum turned on is [30, 29, 31]

ds2 =
1√
H

[

(1 − h)

2
((dx+)2 + (dx−)2) − (1 + h)dx+dx− + dx2

2 + dx2
3

]

+ (4.1)

√
H

[

dr2

h̃
− 2lr2

0

R2
sin2 θdtdφ + r2(∆dθ2 + ∆̃ sin2 θdφ2 + cos2 θdΩ2

3)

]

,

where

x± =
1√
2
(x0 ± x1) ,

H =
R4

r4∆
,

∆ = 1 +
l2 cos2 θ

r2
,

∆̃ = 1 +
l2

r2
,

h = 1 − r4
0

r4∆
,

h̃ =
1

∆

(

1 +
l2

r2
− r4

0

r4

)

,

R4 = 4πNgsl
4
s . (4.2)

This background is dual to N = 4 SYM theory with an R-charge density, or equivalently,

a chemical potential. The geometry has an event horizon at the positive root of h̃(rH) = 0,

r2
H =

1

2

(

√

l4 + 4r4
0 − l2

)

, (4.3)

and an associated Hawking temperature, angular momentum density, and angular velocity

at the horizon

T =
rH

2πR2r2
0

√

l4 + 4r4
0 , J =

lr2
0R

2

64π4g2
s l

8
s

, Ω =
lr2

H

r2
0R

2
, (4.4)
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which translate respectively into the temperature, R-charge density and R-charge chemical

potential in the gauge theory.

In this section we will calculate the jet-quenching parameter q̂J following [5], and

compare with the drag force result of [17]. For this we must consider a string whose

endpoints lie at r → ∞ in the spacetime (4.1) and trace a rectangular light-like Wilson

loop of length L along x2 ≡ y and L− along x− [5] . Making the static gauge choice

σ = y, τ = x−, the relevant configuration is r(y, x−) = r(y), with all other embedding

fields constant, and with boundary conditions r(±L/2) = ∞. The Nambu-Goto action

reduces to

S =

√
2L−

2πα′

∫ L/2

0
dy

√

(

1

H
+

(r′)2

h̃

)

(1 − h) . (4.5)

Notice that, just like in [5, 7, 11], we are working in Lorentzian signature and have omitted

a factor of i in (4.5).

Regarding y as ‘time’, the fact that the Lagrangian is time-independent implies that

the ‘energy’ is conserved, a statement that is easily seen to lead to

(r′)2 =
h̃

H

(

γ(1 − h)

H
− 1

)

=
h̃

H

(

γr4
0

R4
− 1

)

, (4.6)

with γ ≥ R4/r4
0 an integration constant. It follows from this equation that the minimum

value of r(y), which by symmetry must lie at y = 0, occurs at the radius where h̃ = 0, i.e.,

at the horizon rH .

Integrating (4.6) we find a relation between γ and the width L of the Wilson loop,

L

2
=

1
√

(γr4
0/R

4 − 1)

∫ ∞

rH

dr

√

H

h̃
=

R2I

rH

√

(γr4
0/R

4 − 1)
, (4.7)

where we have defined

I =

∫ ∞

1

dρ
√

ρ4 + (l2/r2
H)ρ2 − r4

0/r
4
H

=

∫ 1

0

dζ
√

1 + (l2/r2
H)ζ2 − r4

0/r
4
Hζ4

. (4.8)

Also, using (4.6) in (4.5) we are left with a trivial integral that yields

S =
L−L

2
√

2πα′

√
γ . (4.9)

According to the recipe of [6], to compute the Wilson loop we must subtract from S the

self-interaction of the isolated quark and the isolated antiquark, which in the AdS side

corresponds to the Nambu-Goto action evaluated for strings that extend from (to) r → ∞
to (from) r = rH at fixed y,

S0 =

√
2L−

2πα′

∫ ∞

rh

dr

√

1 − h

h̃
=

√
2r2

0L
−I

2πα′rH
. (4.10)

It is clear from (4.7) that small L corresponds to large γ. In this regime, the leading

term in (4.7) implies
√

γ ∝ 1/L, which when substituted in (4.9) gives an L-independent

result that is precisely cancelled by (4.10). The quantity we are after comes from the

– 7 –
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next-to-leading term in (4.7) for large γ, which yields

SI = S − S0 =
r2
0rHL−L2

8
√

2πα′R4I
. (4.11)

Using the definition of [5], the jet-quenching parameter then follows as3

q̂J ≡ 2SI

L−L2/4
√

2
=

r2
0rH

πα′R4I
. (4.12)

The final step would be to express the result (4.12) in terms of gauge theory quantities.

This can be done analytically in the l ¿ r0 regime, where up to O(l4/r4
0) corrections the

relations (4.3) and (4.4) imply

rH ' r0

(

1 − l2

4r2
0

)

= r0

(

1 − 4J2

π2N4T 6

)

, r0 ' πR2T

(

1 +
4J2

π2N4T 6

)

, (4.13)

and the integral (4.8) can be seen to give

I '
√

πΓ(5/4)

Γ(3/4)
+

l2

4r2
0

(E(−1) − 2K(−1)) ≡ a − l2

4r2
0

b , (4.14)

where E and K respectively denote complete elliptic integrals of the second and first kind.

The numerical value of the coefficients defined above is a ' 1.311, b ' 0.7120. Putting this

all together, and remembering that the ’t Hooft coupling is given by λ ≡ g2
Y MN = R4/α′,

we are finally left with

q̂J =
π2

√
λT 3

a

[

1 +
4J2

π2N4T 6
(2 + b/a) + O(

J4

T 12
)

]

. (4.15)

As a (rather mild) check, note that the leading term, q̂J=0, reproduces the result of [5].

The next-to-leading term is a new result.

Again, it is natural to compare (4.15) against the drag force calculated in [17] (see

also [16]),
(

dp1

dt

)

J

= −π

2

p1

m

√
λT 2

[

1 +
8J2

π2N4T 6
+ O(J4/T 12)

]

. (4.16)

The comparison is especially interesting because the quantities to be compared are now

functions of the additional parameter J . The leading term in (4.16) is of course the result

computed in [14, 15] at zero chemical potential. As in the cascading gauge theory case

analyzed in the previous section, we find that the subleading terms in the jet-quenching

ratio

q̂J

q̂0
= 1 +

8J2

π2N4T 6
(1 + b/2a) + O(

J4

T 12
) (4.17)

3We employ here the final normalization of q̂ given in v3 of [5]; the original definition was a factor of
√

2

smaller.
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and the drag force ratio,

(dp1/dt)J
(dp1/dt)0

= 1 +
8J2

π2N4T 6
+ O(J4/T 12) (4.18)

have the same qualitative form.The numerical coefficients are also in rough agreement:

they are both positive, implying that both the drag force and the jet-quenching parameter

increase with increasing charge density, and they are of the same order of magnitude.

It is important to note, however, that this agreement cannot persist at arbitrarily high

order in the expansion in powers of l/r0, because the full result (4.12) for the jet-quenching

parameter evidently has a different functional dependence on r0 and l than the full drag

force result [17]
(

dp1

dt

)

J

= −r2
0/R

2

2πl2s

p1

m
. (4.19)

This appears to imply that, in the general case, the drag force and jet-quenching parameter

codify somewhat different information on the process of energy loss in a plasma.

After the first version of this paper had been posted on the arXiv, three other cal-

culations of q̂ in a charged N = 4 SYM plasma appeared [35 – 37]. The first of these is

not directly comparable to ours, because the authors of [35] employed a five-dimensional

supergravity perspective instead of the ten-dimensional string theory viewpoint adopted

here (for a discussion on the relation between these two approaches, see [17]). Our full

result (4.12) for the singly-charged plasma agrees with the one obtained by the authors

of [36] (who also determined q̂ for two equal non-zero charges) and [37] (who addressed the

general three-charge case). This result was plotted in [36] and shown to be non-monotonic

beyond the small-charge region explored in (4.15), which motivated the authors of [17] to

generate a comparable plot of their drag force result (4.19). As expected from the discus-

sion above, the two graphs are different but qualitatively similar, so again the general lesson

seems to be that the parameter q̂ defined by [5] and the dissipative force extracted from

the procedure pioneered in [14, 15] represent closely related but not identical measures of

energy dissipation in a given non-Abelian plasma. Evidently, more work will be required

to completely elucidate the relation between these two approaches.
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